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Significant changes have recently been made to the way in which explicit 

diffusion is carried out for the turbulent mix model in Kull. That is, the upwind method of 
calculating divergences of drift/diffusion velocities has been replaced by a more standard 
treatment, where diffusion coefficients are averaged to the nodes, multiplied by the 
gradient of some field, and then the usual divergence of this product is taken. Boundary 
conditions are handled very differently in these two approaches, and for Rayleigh-Taylor 
problems, the upwind method leads to non-monotonic density profiles and an incorrect 
treatment of fluxes at mesh boundaries. The more standard approach to diffusion is also 
taking advantage of the new, more powerful region definition in Kull which puts buffer 
zones around the region at material boundaries (external zones) and also at mesh 
boundaries (external surface zones). This allows for much more control of the fluxes at 
these boundaries, and also saves considerable computer time and memory, since we can 
now take gradients and divergences of region based fields (rather than the old approach 
of creating a mesh based field to store the region quantity, performing the differential 
operators on the mesh based field, and finally storing the mesh based field back in the 
region variable). 
 

To verify that the new diffusion algorithm is working as anticipated, we have 
selected a nonlinear diffusion-dissipation problem known as the Barenblatt turbulent 
burst problem. This problem involves solving two coupled nonlinear partial differential 
equations (a very simplified k-ε model) for the temporal and spatial evolution of the 
turbulent kinetic energy (k) and the turbulent dissipation rate (ε). What makes this 
nontrivial problem useful from a verification standpoint is that it has an analytic self-
similar solution.  
 

The coupled equations for the Barenblatt problem are: 
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In Kull, the EZturb k- ε model is tightly coupled to the Lagrange hydro, and so the actual 
mix model equations we solve when the model is active are: 
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Here, α r, ρr ,  and Ir are the volume fraction, thermodynamic density, and specific 
internal energy (by mass) for material r. Sij is the strain rate tensor, and τij is the turbulent 
shear stress tensor, for which we use the following Boussinesq approximation: 
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The turbulent viscosity includes the effects of both shear and buoyancy and takes the 
form: 
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The unlimited form of the buoyant production term is given by: 
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and the way this term manifests itself in the internal energy equation is: 
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The model constants are C1ε, C2ε, C3ε, σM, σU, σK, σZ, σρ, Cµ, and Cω.  Also, δIso, δAniso, 
and δI,diss are on/off switches that can be set to 1 or 0.  
 

At this point, it may not be obvious how this form of the EZturb model reduces to 
what must now appear to be an extremely simplified turbulent model, namely, the 
Barenblatt burst model. However, if we set the three δ switches to 0, then τij will be 
identically zero (we therefore eliminate any coupling of the mix model to the mean flow) 
and we will also eliminate dissipation in the internal energy equations. If we then set σM, 
σU, and σρ to very large values, we will prevent any diffusion of volume fraction, mass, 
and internal energy for all materials, as well as kill all the buoyant production terms. 
Finally, if we initialize the mean velocity to zero, the mean density to unity, and set Cω = 
0, then the EZturb model will reduce exactly to the Barenblatt model, and we can run 
Kull in the usual fashion (take a Lagrange hydro step followed by a mix step using 
operator splitting).  

 
If Cε2 = 2, the solution to equations 1,2 takes the simple form of: 
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Clearly, the analytic solution “blows up” at t = 0, and so we will use t0 = .1 sec. The 
diffusion constant D0 will be set to .01 cm2/sec, and Cµ, the von Karaman constant, will 
take the standard value of .09. For the spatial domain, we will consider four meshes (25 
zones, 50 zones, 100 zones, and 200 zones) in which −.15 ≤ x ≤ .15 . 
 
 Figure 1 shows comparisons of the numerical and analytic solutions for ε(x,t) for t 
= t0 (.10 sec), .15 sec, .20 sec, and .4 sec for the mesh with the coarsest zoning. From the 
figure, it is evident that even with only 25 zones, the agreement between the solutions is 
quite good. The initial profile for e is parabolic and the coarseness of the grid manifests 
itself at the intercepts of the parabola with the x-axis. This mismatch gets better as the 
zoning is refined. Also, the analytic solution needs to be cut off at the diffusion front. 
That is, there is nothing mathematically unreasonable about having k and ε take on 



negative values; however, it is unphysical for kinetic energy or dissipation to be negative. 
Therefore, a simple “ε=max(0, ε)” is used when presenting the analytic solutions. Having 
a hard zero in the code can be problematic, and so floor values of 1.0e-14 and 1.0e-16 are 
used for k and ε respectively. Figures 2, 3, and 4 are the same as Figure 1, except that we 
are looking at the effect of increasing the mesh resolution. 
 
 From the previous figures, it is difficult to get a feel for the error committed by 
the numerical solution of the PDEs. To remedy this fact, we can compute a relative error 
defined as | εanalytic – εnumerical | / εnumerical and plot this error as a function of position at 
multiple times for the different mesh resolutions. Figures 5-9 address this issue (by 
plotting the relative error in dissipation at t = .2 sec, .3 sec., .4 sec., and .5 sec.), and it is 
encouraging (and expected) that for a fixed resolution, the relative error decreases in the 
central region of the calculation (i.e., away from the edge of the diffusion front). Also, the 
region over which reasonable agreement is obtained increases in time for a given 
resolution.  The reason for larger discrepancies at the edges is due to the sharp cutoff in 
the analytic solution vs. the tail in the numerical solution. If the numerical solution at the 
edge for the dissipation is 1.0e-8, then this will produce a large relative error, since the 
analytic solution is 0 (or we could use the floor value of 1.0e-16). Figure 9 shows the 
effect of increasing the mesh resolution for t = .4 sec. From the figure, it appears as 
though we are achieving convergence, as the results for 100 and 200 zones seem to 
collapse nicely in the central region. To make the rate of convergence more quantitative, 
we can compute error norms from the absolute error at each grid point. For example the 
Lp-norm is defined as: 
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where α = 1, 2, 3, 4 corresponds to the four different meshes of 25, 50, 100, and 200 
zones. The slope of a log-log plot of Lp (α) vs. ∆xα  gives p, the so called order of 
convergence. Figure 10 shows this information for the dissipation at t = .4 sec with the 
slopes also shown in the legend of the figure. For example, the L2-norm is 1.92, which 
suggests we are achieving approximately 2nd order convergence. The norms were 
computed by only considering x-values whose absolute value was less than or equal to .1 
to avoid the spurious errors at the edge of the diffusion front. As the spatial derivatives of 
zone centered fields in Kull reduce to central differences on regular meshes, we should 
see 2nd order convergence. 
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